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Nonlinear Robust Control Theory and Applications

John C. Doyle,* Principal Investigator

AFOSR AASERT Final Report
18 January 1997

F49620-93-1-0545t

Introduction
Carolyn Beck (now an Assistant Professor in the Electrical Engineering

Department at University of Pittsburgh1) was supported by this AASERT
fellowship while she completed her PhD in Electrical Engineering at Caltech.
Her research and thesis were on model reduction of uncertain systems, which
will be summarized in this report.

Model based control methods are commonly used in the design of large,
complex systems. Specifically, a mathematical model of the system is con-
structed, utilizing, for example, first principles analysis and experimental
data, which is then used for subsequent control system design and analysis.
For the purposes of feedback control highly accurate models are desired.
However, such accuracy often requires that complicated high-order mod-
els be used, which in turn lead to more difficult control design problems
from both an engineering and a computational perspective. The empha-
sis of this research is on the development of methods for reducing the size
and complexity of the model while retaining the essential features of the
system description. The main goal of these methods is to find a simpli-
fied system model which describes the physical system accurately enough so
that controllers designed based on this simplified model perform well when
implemented on the real system. Directly related to the topic of model re-
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duction are the realization theory concepts of minimality and its converse
reducibility, which are also addressed in detail in this thesis.

A fundamental limitation in achieving desired system performance via
any control design process is the inherent uncertainty in modelling the dy-
namics of the system under consideration. This uncertainty arises during
the modelling process, which requires making a number of assumptions, es-
timations and simplifications; for example, uncertainty is often attributed
to unmodelled dynamics such as nonlinearities and disturbances, and to in-
complete knowledge of exact values for many of the system parameters. The
effects of model uncertainty in feedback control may be substantial, partic-
ularly for high performance systems, since many control strategies attempt
to utilize all system information present in the model in order to optimize
system performance. The main approach taken to account for model uncer-
tainty, is to design controllers that perform well on a set of models, rather
than on a single model. The model set is defined using a nominal model
which is considered to be perturbed by a prescribed uncertainty set; that is,
the model itself explicitly includes an uncertainty description. By appropri-
ately defining and structuring the uncertainty set, a model set is constructed
which covers a range of possible system behavior, without allowing for too
many unlikely or impossible models. These models and the systems they
represent are referred to as uncertain systems.

There has been much research activity on model reduction methods in re-
cent years, however, previous reduction methods have addressed only reduc-
tion of the state dimension of the model (that is, the nominal model) and fail
to address the issue of reducing the uncertainty description. In notable con-
trast to such methods, this research presents a systematic model reduction
method to reduce both the state dimension and the uncertainty description,
providing a greater reduction in the overall size and complexity of the model.
Furthermore, related realization theory for uncertain systems, including an
explicit method to determine the existence of, and compute, minimal order
equivalent realizations for uncertain system models is addressed. Both the
model reduction methods and the realization theory developed in this re-
search are applicable to multi-dimensional system realizations, and include
the standard one-dimensional (1D) results as the simplest case.

The development of earlier theory relevant to this research proceeded
along two somewhat separate paths: one related to the robustness framework
originally proposed by Zames in 1966 [1], and the other to the state-space
realization theory developed mainly in the '60s by Gilbert [2], Zadeh and
Desoer [3], Kalman [4], Rosenbrock [5] and others.

In [1], Zames introduced the small gain theorem, which provides an exact
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robust stability test for systems perturbed by unstructured dynamic uncer-
tainty. This test is said to be robust in that it holds when the nominal model
is subjected to all allowable values of the uncertainty. These exact results
for unstructured uncertainty give sufficient conditions for robust stability
of systems with respect to structured uncertainty. However, for structured
uncertainty, these results are often conservative. As a result, the notion of
rearranging the uncertainty into block diagonal form and using structured
scaling matrices to reduce conservativeness in the tests was suggested in
the early '80s by Doyle [6], and Safonov [7]. We consider the framework
developed by Doyle and coworkers for modelling systems with structured
uncertainty, that of dynamic perturbations to a nominal system which enter
in a linear fractional manner; see [8], [9], [10], [11] and the references therein
for further details.

More recently, synthesis methods have been developed which provide
systematic techniques to construct controllers for systems subject to struc-
tured uncertainty, and for which robust stability and performance are guar-
anteed (see for example [12], [11], [13]). These controllers have at least the
same state dimensions and uncertainty set complexity as the original sys-
tem model. Moreover, the synthesis of these controllers and the subsequent
system analysis often rely on complicated computational solutions which
become increasingly difficult to implement as the model size and complexity
grows. Thus, the need for reducing both the nominal model and uncertainty
description has become apparent.

A number of methods for reducing the state dimension of models were
proposed in the '80s; examples include the balanced truncation model re-
duction method and its additive H,, norm error bound, and the optimal
Hankel norm model reduction method and its Hankel norm error bound.
These are state-space methods, and rely to a large extent on the notion of
finding balanced realizations for systems. The use of balanced realizations
was first proposed by Moore [14] as a means of better analyzing realizations
for reducibility based on the comparative controllability and observability
of the system states. This was intended as a more computable alternative
to the problem of finding minimal state-space realizations, originally put
forth by Kalman [4] and Gilbert [2]. Thus, from its inception, the notion of
balanced model reduction has been intertwined with the notions of minimal-
ity, controllability and observability, and solutions to state-space Lyapunov
equations. Specifically, when the controllability and observability Grami-
ans, the solutions to the Lyapunov equations, are equivalent and diagonal
the associated state-space model is said to be balanced. The states corre-
sponding to the small-valued elements of the balanced Gramian are both
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weakly controllable and weakly observable and can be truncated with rel-
atively little resulting error. The guaranteed a priori error bounds for the
balanced model reduction method were found independently by Enns [15]
and Glover [16]; the corresponding bounds for discrete-time systems were
presented by Hinrichsen and Pritchard [17].

This work builds on the balanced truncation method for 1D systems,
generalizing these techniques and related realization theory to the linear
fractional transformation (LFT) setting. The LFT models and results dis-
cussed herein are applicable to uncertain systems, multi-dimensional sys-
tems, or formal power series. The main results include a necessary and
sufficient condition for the exact reducibility of LFT systems, leading natu-
rally to a notion of minimality for these systems. Furthermore, systematic
model reduction methods with guaranteed a priori upper error bounds are
given for uncertain and multi-dimensional systems models.

Summary of Main Results
We begin the summary with a brief review of the LFT modelling frame-

work commonly used to represent uncertain systems, followed by a short
discussion of existing model reduction and realization theory results for un-
certain systems. For complete details on the following material, see [18].

We consider the LFT paradigm shown in Figure 1, where A represents
uncertainty, or a dynamic element, and

I=C B]

is a realization of the input-output mapping

A* M = D + CA(I- AA)-'B;

we assume throughout that the inverse is well-defined. If we let A represent
repeated copies of the integral or shift operator (e.g., 11s) then we recover
the transfer function (1/s) * M = D + C(sI - A)-1B and a standard state-
space realization with state x, input u and output y. By simply allowing the
A block to represent more general system operators, LFT systems provide a
convenient framework for adding uncertainty in which essentially all of the
major state space results can then be generalized (see [19] and the references
therein).

We assume A lies in a prescribed set,

A {diag [1,,,. .. ,S p5n] :6i CLC(12)}. (1)
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Figure 1: Uncertain System

We often consider A which lie in a unity norm-bounded subset of A, denoted
by BA. Note that 6i E L(1 2) allows time-varying operators on 12, which are
not commutative. Furthermore, it is typically assumed that M is an LTI
system, but it is equivalent and simpler to assume that M is a constant and
include the shift or integral operator as one of the 6j. This then gives us a
state-space realization for uncertain systems which is analogous to standard
or 1-D realizations.

Reduction Results

In [20] and [18] it is shown that a general version of similarity transfor-
mations, system Lyapunov equations, and controllability and observability
Gramians in balanced truncation model reduction and in terms of quantify-
ing system minimality hold for uncertain systems modelled using the LFT
framework. Namely, given a realization (A, M) and any e > 0, a lower order
realization (A, Mr) exists such that SUpAeBA II (A *M) - (Ar *MI 11 ]] 12 <
c if and only if there exist block diagonal structured solutions, X > 0 and
Y > 0, to the system Lyapunov inequalities:

AYA* - Y + BB* < 0
A*XA - X + C*C < 0,

where Amin(XY) = E2 with multiplicity corresponding to the difference in
the dimensions of the full and reduced realizations. Existing LMI solvers
may thus be used to find feasible solutions to (2).

Realization Theory for Uncertain Systems

In the case where f -- 0, we obtain a minimality result which is com-
pletely analogous to standard realization theory. At the same time, we can
find a Kalman-like decomposition structure for the uncertain system realiza-
tion matrices. That is, via the proof of the minimality condition, it is clear
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that the existence of a singular structured Gramian implies that an equiva-
lent realization can be found which has an uncontrollable and unobservable
decomposition. Not surprisingly, we can also construct controllability and
observability matrices on which rank tests may be performed giving us an
equivalent minimality result. For example, given an uncertain system real-
ization (A, M), where A is structured as in (1), then the controllability
matrix is defined by

B1  A1 1 B1  ... AlpBp A21 B1  .... A1 1AlpBp A12 A21B1  ...

B 2 A21B1 ... A2pBp A21AB 1  ... A21A1pBp A22 A21B1  ...

BP APB 1  ... APPBP ApAB 1  ... ApAlpBp Ap2 A21B1  ...

We denote the block rows by Fj = [Bi AjlB 1 ... ]. We can then show that
there exists a singular, block structured matrix Y > 0 satisfying AYA* -
Y + BB* < 0 if and only if rank(Fi) < ni for some i = 1,...,p. These
results may also be found in [18], [21], [22] and [23].

Formal Power Series and LFTs

Connections between the notion of minimality for LFT realizations, as
discussed above, and the notion of minimal representations for formal power
series (FPS), developed mainly in the '70s in the context of nonlinear system
realization theory, are readily found. If we consider LFT realizations where
the only structure we assume for the uncertainty set is the spatial struc-
ture of repeated scalar blocks, then the resulting LFT systems may also be
viewed as a representation of rational functions in multiple noncommuting
indeterminates, that is, as a particular realization of a FPS. The form of the
FPS representations and the definition of minimality used differ from those
used for the LFT representations we consider; we show in [18] and [24] that
given a minimal FPS representation or a minimal LFT realization, the other
(minimal) form can be directly computed.

Computational Solutions and Applications

Computational methods are presented for reducing uncertain system
models with the guaranteed upper error bounds mentioned above. Ideally,
we would like to find minimum rank, structured Gramians Y > 0 and X > 0
to the above LMIs, i.e., solutions Y and X for which the product YX has the
smallest-valued minimum eigenvalue with the highest multipicity. Although
feasible solutions, X and Y, are easily computed using convex programming
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methods (or any of the recent LMI solvers [25, 26]), the optimization prob-
lem itself is a reduced rank LMI problem and as such does not yield a convex
optimization problem, thus we cannot directly apply LMI algorithms to ob-
tain solutions. However, we have constructed a straightforward heuristic
algorithm using existing LMI techniques to obtain solutions for the model
reduction and minimality problem, which have given quite good results not
only in numerical tests, but in applications as well. A detailed description
of the algorithm and applications to a power plant are given in [18] and [27].

Recent and Ongoing Research

Although we can compute guaranteed upper error bounds using these
methods, we cannot simultaneously compute lower bounds. For standard
1-D continuous systems, both upper and lower error bounds for balanced
truncation model reduction can be computed using the singular values of
the associated Hankel operator. In the case of uncertain and discrete time
systems, the actual system Gramians are not used, but instead non-unique
solutions to the LMIs in (2) are found. Thus we cannot strictly relate the
solutions Y and X for the LMIs to a system Hankel operator and Hankel sin-
gular values. However, we may construct Hankel matrices for the uncertain
systems we consider using the realization matrix M.

The relevance of Hankel matrices for uncertain systems has recently been
considered, mainly in the context of minimality, in addition to the associ-
ated Hankel operators and the use of such in computing lower bounds on
system norms and for reduction. We define Hankel matrices for uncertain
systems in a manner similar to those defined for formal power series [28];
structured Hankel matrices have also been considered. We use the so-called
controllability and observability matrices for uncertain systems defined in
[18] for the construction of these Hankel matrices for uncertain systems.
The singular values of the Hankel operators we construct provide reason-
able lower bounds for the system norm, but appear to be conservative
for model reduction lower bounds. Preliminary results may be found in
http://www. cds.caltech.edu/cds/reports/report-cgi/reports. cgi.

From the reduction and realization theory developed for uncertain input-
output models up to this point, computing reduced models with error bounds,
and determining minimality for kernel representations of behavioral uncer-
tain systems is currently under investigation. We consider the behavioral
framework originally proposed by Willems [29]. In order to incorporate un-
certainty into our models, we adopt the output nulling or kernel represen-
tation defined by Weiland [30] to describe 1-D behavioral systems. In this
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framework, both minimality and the evaluation of model reduction error
bounds become more complex. For example, in the input-output frame-
work, we have necessary and sufficient LMI conditions for minimality and
model reduction bounds. In the behavioral framework, the LMI conditions
are only sufficient. In fact, even in the 1-D behavioral case (i.e., no uncer-
tainty) there exist only sufficient conditions. Additionally, if we consider a
kernel representation of a behavior, then minimality also involves the issues
of output injection and detectability, and if we .consider model reduction of
a kernel representation, then the error bounds should be interpreted in a
gap-like metric. Furthermore, to apply the model reduction techniques pre-
viously described, stability and contractiveness of the uncertain behavioral
representations, (A, M), are desired. Stable M generalizes the use of stable
coprime factor representations for input-output systems and as such norms
can be used to define generalizations of normalized coprime factors.

In http://www. cds.caltech.edu/cds/reports/report-cgi/reports. cgi we ad-
dress these issues, first introduced in [31], that are associated with normal-
ization and minimality for uncertain behavioral system representations in
more detail. Algorithms and associated upper error bounds for model re-
duction of behavioral uncertain systems are also discussed.
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